[1] Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
[2] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.
[3] Ghaemi, M., & Feizi-Derakhshi, M. R. (2014). Forest optimization algorithm. Expert Systems with Applications, 41(15), 6676-6687.
[4] Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.
[5] Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4), 28- 39.
[6] Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
[7] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
[8] Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in engineering software, 105, 30-47.
[9] Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.
[10] Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems. Advances in engineering software, 114, 163-191.
[11] Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
[12] Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609.
[13] Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120-133.
[14] Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. simulation, 76(2), 60-68.
[15] Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm. Information sciences, 179(13), 2232-2248.
[16] Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: charged system search. Acta mechanica, 213(3-4), 267-289.
[17] Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: a novel meta-heuristic method. Computers & Structures, 139, 18-27.
[18] Rostami, S. (2021). Optimizing well placement via metaheuristic algorithms (case study: Shadegan fields). Construction science and technology, 2(1), 55-69. (In Persian)
[19] Shirgir, S., Azar, B. F., & Hadidi, A. (2020). Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model. Earthquakes and Structures, 18(4), 493-506.
[20] Azar, B. F., Veladi, H., Raeesi, F., & Talatahari, S. (2020). Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer. Engineering Structures, 214, 110657.
[21] Raeesi, F., Azar, B. F., Veladi, H., & Talatahari, S. (2020, August). An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm. In Structures (Vol. 26, pp. 406-416). Elsevier.
[22] Gölcük, İ., & Ozsoydan, F. B. (2020). Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains. Knowledge-Based Systems, 194, 105586.
[23] Li, M. W., Wang, Y. T., Geng, J., & Hong, W. C. (2021). Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dynamics, 103, 1167-1193.
[24] Raeesi, F., Veladi, H., Azar, B. F., & Talatahari, S. (2020). A hybrid CSS-GW algorithm for finding optimum location of multi semi-active MR dampers in buildings. International Journal of Modelling, Identification and Control, 35(3), 191-202.
[25] Shirgir, S., Azar, B. F., & Hadidi, A. (2020, October). Reliability-based simplification of Bouc-Wen model and parameter identification using a new hybrid algorithm. In Structures (Vol. 27, pp. 297-308). Elsevier.
[26] Raeesi, F., Shirgir, S., Azar, B. F., Veladi, H., & Ghaffarzadeh, H. (2020). Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD. Earthquakes and Structures, 18(6), 719-730.
[27] Tsinidis, G., Papantou, M., & Mitoulis, S. (2019). Response of integral abutment bridges under a sequence of thermal loading and seismic shaking. Earthquakes and Structures, 16(1), 11-28.
[28] Zhang, J., Wu, D., Li, Q., & Zhang, Y. (2019). Experimental and numerical investigation of track-bridge interaction for a longspan bridge. Structural Engineering and Mechanics, An Int'l Journal, 70(6), 723-735.
[29] Erdogan, Y. S., & Catbas, N. F. (2020). Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction. Earthquakes and Structures, 18(1), 1-14.
[30] Nanclares, G., Ambrosini, D., Curadelli, O., & Domizio, M. (2020). Nonlinear dynamic analysis of a RC bridge subjected to seismic loading. Smart Structures and Systems, An International Journal, 26(6), 765-779.
[31] Lee, D. H., & Elnashai, A. S. (2002). Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction. Structural Engineering and Mechanics, 13(3), 241- 260.
[32] Chiou, J. S., Jheng, Y. W., & Hung, H. H. (2019). Numerical simulation of bridge piers with spread footings under earthquake excitation. Earthquakes and Structures, 16(6), 691-704.
[33] Song, S., Wu, Y. H., Wang, S., & Lei, H. G. (2022). Important measure analysis of uncertainty parameters in bridge probabilistic seismic demands. Earthquakes and Structures, 22(2), 157-168.
[34] Liu, X., Jiang, L., Xiang, P., Lai, Z., Zhang, Y., & Liu, L. (2022). A stochastic finite element method for dynamic analysis of bridge structures under moving loads. Structural Engineering and Mechanics, 82(1), 31-40.
[35] Mousavi, S. A., & Heydari, S. (2023). Health monitoring of jinnah bridge in tehran using the time-frequency domain approach. Construction science and technology, 3(3), 49-58. (In Persian).
[36] Gkatzogias, K. I., & Kappos, A. J. (2015). Deformation-based seismic design of concrete bridges. Earthquakes and Structures, 9(5), 1045-1067.
[37] Kehila, F., Kibboua, A., Bechtoula, H., & Remki, M. (2018). Seismic performance assessment of RC bridge piers designed with the Algerian seismic bridges regulation. Earthquakes and Structures, 15(6), 701-713.
[38] Kutyłowski, R., & Rasiak, B. (2014). Application of topology optimization to bridge girder design. Structural Engineering and Mechanics, An Int'l Journal, 51(1), 39-66.
[39] Resmy, V. R., & Rajasekaran, C. (2020). Topology Optimization of Concrete Dapped Beams Under Multiple Constraints. In Numerical Optimization in Engineering and Sciences: Select Proceedings of NOIEAS 2019 (pp. 43-51). Springer Singapore.
[40] Mohammadzadeh, S., & Nouri, M. (2013). An improved algorithm in railway truss bridge optimization under stress, displacement and buckling constraints imposed on moving load. Structural Engineering and Mechanics, An Int'l Journal, 46(4), 571-594.
[41] Hassanain, M. A., & Loov, R. E. (2003). Cost optimization of concrete bridge infrastructure. Canadian Journal of Civil Engineering, 30(5), 841-849.
[42] Liu, S., Huang, B., & Xie, Y. M. (2021). Effects of longitudinal and transverse curvatures on optimal design of shell footbridge. Structural Engineering and Mechanics, 80(1), 27-36.
[43] Artar, M., Catar, R., & Daloglu, A. T. (2017). Optimum design of steel bridges including corrosion effect using TLBO. Structural engineering and mechanics: An international journal, 63(5), 607-615.
[44] Ghiamat, R., Madhkhan, M., & Bakhshpoori, T. (2019). Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm. Structural Engineering and Mechanics, An Int'l Journal, 72(4), 503-512.
[45] Tizhoosh, H. R. (2005, November). Opposition-based learning: a new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (Vol. 1, pp. 695-701). IEEE.
[46] Standard, AASHTO. 2002. 'Standard specifications for highway bridges', American Association of Highway and Transportation Officials, Washington, DC.