] 1[ باباخانی، ع.، قلمقاش، ج.، 1380 ، برگه شماره 5394
تخت سلیمان، از سری نقشه های زمین شناسی 1:100000
ایران، انتشارات سازمان زمین شناسی و اکتشافات معدنی
کشور، تهران.##
] 2[ حسین زاده، ر.، ابراهیمی، ن.، همتیان، ح.، براتی، ب.،
1395 ، گزارش اکتشافات ژئوشیمیایی در ورقه 1:100000
تخت سلیمان، سازمان زمین شناسی و اکتشافات معدنی
کشور، تهران.##
[3] Abedi, M., Torabi, S. A., & Norouzi, G. H.
(2013). Application of fuzzy-AHP method to
integrate geophysical data in a prospect scale,
a case study: seridune copper deposit. Boll
Geofis Teor Appl, 54(2), 145-164.##
[4] Alavi, M. (1994). Tectonics of the Zagros
orogenic belt of Iran: new data and interpretations.
Tectonophysics, 229(3), 211-238.##
[5] Asadi, H. H., & Hale, M. (2001). A predictive
GIS model for mapping potential gold and
base metal mineralization in Takab area, Iran.
Computers & Geosciences, 27(8), 901-912.##
[6] Bonham-Carter, G. F. (1994). Geographic
Information Systems for geoscientists-modeling
with GIS. Computer methods in the geoscientists,
13, 398.##
[7] Bonham‐Carter, G. F., Agterberg, F. P., &
Wright, D. F. (1988). Integration of geological
datasets for gold exploration in Nova Scotia.
Digital Geologic and Geographic Information
Systems, 15-23.##
[8] Carranza, E. J. M. (2008). Geochemical
anomaly and mineral prospectivity mapping in
GIS (Vol. 11). Elsevier.##
[9] Carranza, E. J. M., & Laborte, A. G. (2015).
Random forest predictive modeling of mineral
prospectivity with small number of prospects
and data with missing values in Abra (Philippines).
Computers & Geosciences, 74, 60-70.##
[10] Chung, C. F., & Agterberg, F. P. (1980).
Regression models for estimating mineral resources
from geological map data. Mathematical
Geology, 12(5), 473-488.##
[11] Ghezelbash, R., & Maghsoudi, A. (2018b).
A hybrid AHP-VIKOR approach for prospectivity
modeling of porphyry Cu deposits in the
Varzaghan District, NW Iran. Arabian Journal
of Geosciences, 11(11), 275.##
[12] Ghezelbash, R., Maghsoudi, A., & Carranza,
E. J. M. (2019). Performance evaluation
of RBF-and SVM-based machine learning algorithms
for predictive mineral prospectivity
modeling: integration of SA multifractal model
and mineralization controls. Earth Science Informatics,
12(3), 277-293.##
[13] Ghezelbash, R., Maghsoudi, A., & Carranza,
E. J. M. (2020). Sensitivity analysis of prospectivity
modeling to evidence maps: Enhancing
success of targeting for epithermal gold,
Takab district, NW Iran. Ore Geology Reviews,
120, 103394.##
[14] Ghorbani, M. (2013). The economic geology
of Iran: mineral deposits and natural resources.
Springer Science & Business Media.##
[15] Harris, D., & Pan, G. (1999). Mineral
favorability mapping: a comparison of artificial
neural networks, logistic regression, and
discriminant analysis. Natural Resources Research,
8(2), 93-109.##
[16] Hassoun, M. H. (1995). Fundamentals of
artificial neural networks. MIT press.##
[17] Kavzoglu, T., & Colkesen, I. (2009). A
kernel functions analysis for support vector
machines for land cover classification. International
Journal of Applied Earth Observation
and Geoinformation, 11(5), 352-359.##
[18] Maghsoudi, A., Rahmani, M., & Rashidi,
B. (2005). Gold deposits and indications of
Iran.##
[19] Najafi, A., Karimpour, M. H., & Ghaderi,
M. (2014). Application of fuzzy AHP method
to IOCG prospectivity mapping: A case study
in Taherabad prospecting area, eastern Iran. International
journal of applied earth observation
and geoinformation, 33, 142-154.##
[20] Porwal, A., Carranza, E. J. M., & Hale,
M. (2003). Knowledge-driven and data-driven
fuzzy models for predictive mineral potential
mapping. Natural Resources Research, 12(1),
1-25.##
[21] Reddy, R. K. T., & Bonham-Carter, G. F.
(1991). A decision-tree approach to mineral potential
mapping in Snow Lake area, Manitoba.
Canadian Journal of Remote Sensing, 17(2),
191-200.##
[22] Rodriguez-Galiano, V., Sanchez-Castillo,
M., Chica-Olmo, M., & Chica-Rivas, M. J. O.
G. R. (2015). Machine learning predictive models
for mineral prospectivity: An evaluation
of neural networks, random forest, regression
trees and support vector machines. Ore Geology
Reviews, 71, 804-818.##
[23] Sibson, R. H. (1996). Structural permeability
of fluid-driven fault-fracture meshes. Journal
of Structural Geology, 18(8), 1031-1042.##
[24] Simpson, M. P., Mauk, J. L., & Simmons,
S. F. (2001). Hydrothermal alteration and hydrologic
evolution of the Golden Cross epithermal
Au-Ag deposit, New Zealand. Economic
Geology, 96(4), 773-796.##
[25] Sun, T., Chen, F., Zhong, L., Liu, W., &
Wang, Y. (2019). GIS-based mineral prospectivity
mapping using machine learning methods:
A case study from Tongling ore district,
eastern China. Ore Geology Reviews, 109, 26-
49.##
[26] Yousefi, M., & Carranza, E. J. M. (2015).
Fuzzification of continuous-value spatial evidence
for mineral prospectivity mapping. Computers
& Geosciences, 74, 97-109.##
[27] Zuo, R., & Carranza, E. J. M. (2011). Support
vector machine: a tool for mapping mineral
prospectivity. Computers & Geosciences,
37(12), 1967-1975.##